power pairing: color + words

What is one thing you’ll do differently after learning the storytelling with data lessons?

At the end of our workshops, participants are often prompted to reflect on this question. The resulting discussion usually evolves into things that can be easily integrated into the day-to-day work already being done. One piece of advice we frequently give may surprise you—there are two easy actions that don’t require complicated technical skills! First, adopt the habit of stating your takeaway in words. Second, develop the practice of using color sparingly. Today’s post is a quick illustrative example that puts these tips to use. 

At a recent client workshop, we discussed a visual similar to the one below. It is a snapshot of an organization’s current accounts payable (AP) by vendor at a point in time. At a basic level, the graph is fine. It’s cleanly designed with a left-aligned chart title, data labels incorporated into the bars, and no clutter of gridlines or chart border. The bar chart is easy for me to read—I can quickly see that AP is highest for Microsoft and how incrementally larger it is compared to the other vendors because of the consistent baseline (the y-axis). 

 
Picture1.png
 

What I can’t easily see is what I should take away from this chart. At client workshops, we often don’t have this important context—because of this, we often show multiple approaches for highlighting different potential takeaways. Below you’ll see several strategies for employing color and words in this visual. In each of these, notice how the words set up your expectations for what’s emphasized in the graph and color used sparingly indicates where to look in the visual. 

If the audience is interested in the highest spend, I could emphasize the largest vendor:

 
 

Perhaps the audience will be more curious where AP is concentrated. I could instead focus attention on the top vendors:

 
 

What if the conversation is about expectations—is this spend surprising or unsurprising? I might add additional context with super-categories—useful if the audience is unfamiliar with these vendors’ services—grouping and employing similarity of color and position to visually tie the text to the data it describes. 

 
 

Practice pairing color and words in your visuals to be more effective when communicating for explanatory purposes with data. Bonus: you don’t need fancy tools to do either of these things!

Download the file for a peek at how I created these visuals in Excel. 


Elizabeth Ricks is a Data Storyteller on the SWD team. She has a passion for helping her audience understand the ’so-what?’ as concisely as possible. Connect with Elizabeth on LinkedIn or Twitter.

visualizing uncertainty

We often have some measure of uncertainty in our data—a forecast, prediction or range of possible values. A common challenge is how to visualize that uncertainty and help our audience understand the implications. In today’s post, I’ll use a real-world example to illustrate one approach and share tactics for creating in Excel.

The client’s original visual looked similar to the one below. It shows 2017 earnings per share (EPS) and the forecast outlook for the next four years. The client used a CAGR to forecast a range of possible EPS values from 2018 - 2021.  

 
Picture1.png
 

At first glance, it wasn’t obvious that the blue bars represented a forecast (even with the x-axis labeling of “E” for expected). The first yellow bar represents the 2017 actual EPS and next four blue bars are the forecast for 2018 - 2021 where the solid section represents the midpoint and the data labels is the uncertain piece—the range of projected values.  

I made a few design changes to make the graph a little easier to interpret. I first changed the bars to lines and used a dotted line for 2018 - 2021 with unfilled data markers to help visually reinforce the uncertainty.

 
Picture4.png
 

In Excel, there are two potential ways to achieve this formatting. A brute-force approach is to use a single data series and format each individual data point as a dotted line. Another approach is to graph two separate data series, one as a solid point or line and the second as a dashed line or unfilled circle, with a point of overlap to make the lines connect. You can read more detail about these two approaches in this prior post.

We often face the decision of preserving the y-axis vs. labeling data directly. I’ve done the latter in the visual below. One consideration in this decision point is the level of specificity your audience needs: are the actual values important? Or is the overall shape of the data more important? You can read more about these considerations in this prior post.

 
 

Next, let’s revisit how to show the range of forecast values. The original visual is shown again below where the forecast EPS values are represented by the data labels on top of the bars.

 
 

Rather than leave the audience with the highly taxing processing of reading these values, we can aid interpretation by instead depicting the forecast as a shaded range around the point estimate. This keeps the emphasis on the midpoints, while reducing clutter and eliminating the additional work the audience has to do. If the specific forecast values are important to the audience, we’ll deal with that momentarily.

 
 

The brute-force Excel method to adding this grey band requires a little math, graphing a second data series as a stacked bar and then formatting the stacked bar so that the bottom section renders white and the top section grey. You can download the accompanying Excel file to see how I accomplished this.

 
Picture6.png
 

But the visual is not yet complete. We should take the opportunity to add value to this data by telling the intended audience what they should know. Let’s assume this is a positive story where the outlook from the original base year (2016) has been extended to 2018. I might add explanatory text, paired with strategic use of color (I chose green to depict positivity) to focus attention on the relevant points of the data. If specific forecast EPS values are important for a given year, I could include them for context in the text. For a very technical audience, I might include even more detail with the statistics around the forecast. Just a reminder to always design with the audience’s needs in mind!

 
Picture5.png
 

 

Are you aware of other methods to achieve this effect? Have you seen other examples of uncertainty depicted effectively or tips you’d like to share? Leave a comment with your thoughts!


Elizabeth Ricks is a Data Visualization Designer on the Storytelling with Data team. She has a passion for helping her audience understand the ’so-what?’ as concisely as possible. Connect with Elizabeth on LinkedIn or Twitter.

align against a common baseline

There is a recommendation I find myself often voicing to workshop participants: Think about what you want your audience to be able to easily compare. Put those things as physically close together as you can and align them along a common baseline. This post features a makeover applying this recommendation.

Read More

design with audience in mind

In this post, I makeover less-than-ideal visuals from a recent USA Today graphic summarizing diversity stats across a number of Bay Area tech companies and discuss my design thought process when doing so.

Read More

alternatives to pies

My disdain for pie charts is well documented. While opinions on their usefulness run the gamut, I am certainly not alone in my contempt. In my workshops, I sometimes get the question, "In what situation would you recommend a pie chart?" For me, the answer is never. There are a number of alternatives, each with their own benefits. It's these alternatives that I'll focus on in this post.

Read More

the story you want to tell...and the one your data shows

This is a case where the story being told wasn't quite right, or at least wasn't exactly the story I would tell after looking at the data in a couple of different ways. Here, I'll walk you through my thought process and makeover.

Read More